
SHORT COMMUNICATION

Profiling phospho-signaling networks in breast cancer using
reverse-phase protein arrays
TS Gujral1,2, RL Karp1, A Finski1,3, M Chan1, PE Schwartz4, G MacBeath1,2 and P Sorger1

Measuring the states of cell signaling pathways in tumor samples promises to advance the understanding of oncogenesis
and identify response biomarkers. Here, we describe the use of Reverse Phase Protein Arrays (RPPAs or RPLAs) to profile signaling
proteins in 56 breast cancers and matched normal tissue. In RPPAs, hundreds to thousands of lysates are arrayed in dense
regular grids and each grid is probed with a different antibody (100 in the current work, of which 71 yielded strong signals
with breast tissue). Although RPPA technology is quite widely used, measuring changes in phosphorylation reflective of
protein activation remains challenging. Using repeat deposition and well-validated antibodies, we show that diverse patterns
of phosphorylation can be monitored in tumor samples and changes mapped onto signaling networks in a coherent fashion.
The patterns are consistent with biomarker-based classification of breast cancers and known mechanisms of oncogenesis.
We explore in detail one tumor-associated pattern that involves changes in the abundance of the Axl receptor tyrosine kinase (RTK)
and phosphorylation of the cMet RTK. Both cMet and Axl have been implicated in breast cancer, or in resistance to anticancer
drugs, but the two RTKs are not known to be linked functionally. Protein depletion and overexpression studies in a ‘triple-negative’
breast cell line reveal cross talk between Axl and cMet involving Axl-mediated modification of cMet, a requirement for
cMet in efficient and timely signal transduction by the Axl ligand Gas6 and the potential for the two receptors to interact
physically. These findings have potential therapeutic implications, as they imply that bi-specific receptor inhibitors (for example,
ATP-competitive small-kinase inhibitors such as GSK1363089, BMS-777607 or MP470) may be more efficacious than the
mono-specific therapeutic antibodies currently in development (for example, Onartuzumab).
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Oncogenic selection functions at the level of networks and
pathways rather than individual genes.1 To date, most multiplex
analyses of clinical specimens have involved genomic data
because measurement of gene sequences and expression levels
is reliable and relatively simple. However, expression profiling
does not report directly on regulation at the level of protein
abundance or post-translational modification, both of which are
required to understand the activities of signaling pathways.2

Protein state can be assayed using conventional immunoblotting,
but this technique has relatively low throughput. The throughput
of mass spectrometry (LC/MS) is much greater in terms of total
number of data-points but relatively large samples are required, a
problem when working with clinical specimens, and assaying
many samples remains slow. In the past few years, ‘Reverse-phase’
protein microarrays (RPPAs) have emerged as a way to perform
high-throughput immune-based assays on small amounts of
material. In an RPPA, thousands of lysates are arrayed in a
dense, regular grid onto glass-supported nitrocellulose pads
mounted on a microscope slide, which is then probed with a
different antibody.3–8 Subsequent visualization of the bound
antibody on each spot provides a quantitative measure of specific
antigens in immobilized samples. A drawback of this approach is
that only a small subset of antibodies are sufficiently selective to
work in an RPPA format9 largely, because off-target binding by

antibodies contributes to the overall signal. Nonetheless, several
studies have shown that RPPA technology is effective in mapping
intracellular signaling networks in cell lines.3,10–13 Here, we ask
whether RPPAs can also be used to analyze phosphorylation-
mediated signal transduction in human tumor samples.

The current study is a collaboration between a company
specializing in rapid processing of surgical tissues and an
academic group experienced in RPPA analysis (samples of
the lysates analyzed in this paper are available from www.
proteinbiotechnologies.com for those who wish to follow up our
experiments). Analyzing post-translational modifications in clinical
samples require that biopsies be processed rapidly to minimize
degradation and dephosphorylation: tissue ischemia alters the
expression of 10–15% of all genes within 15 min of resection, and
B30% of all proteins change in abundance within 30 min.14 To
minimize the changes in protein abundance and phosphorylation,
tumors were flash-frozen in liquid nitrogen within 5–10 min of
resection. Adjacent normal tissue was also collected and
processed in parallel. Frozen tissue was minced and homogenized
in cold modified RIPA buffer and total protein levels were
quantified (Bio-Rad Laboratories). Tumors included the major
histotypes and stages of breast cancer: most cases (n¼ 48) were
classified as ductal carcinoma of varying grade; mucinous and
intraductal cancers were represented by three samples each;
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and lobular and a metaplastic tumors by one sample (Supplemen-
tary Table S1).

Approximately 100 arrays were printed from normal and tumor-
derived extracts (B10 mg total protein per extract), with each array
receiving eight depositions per spot to increase the signal-to-noise
ratio. Arrays were adhered to bottomless microtiter plates,
allowing rapid processing of 100 arrays with 100 different primary
antibodies (Figure 1a). Slides were incubated with dye-labeled
secondary antibodies and scanned to quantify fluorescence levels
on a spot-by-spot basis. Primary antibodies were directed against
proteins, or phosphorylated forms of proteins, known to have a
role in oncogenic signal transduction. Several thousand antibodies

have been screened by us and by others8,9 to identify the B5% of
commercial antibodies that exhibit sufficient specificity in multiple
cell lines (Figure 1b), particularly for the phosphorylated forms of
receptor tyrosine kinases (RTKs), and the cytosolic and nuclear
proteins they regulate (Figure 1c). To validate, antibodies are
screened against a variety of ‘biological contexts’ using lysate
microarrays. Each context represents a specific combination of
cellular type and treatment conditions. Based on the statistical
significance of the resulting measurements, promising antibody–
context pairs are further evaluated by quantitative western
blotting. If the two data sets agree (R2

X0.7), the then antibody
is considered ‘validated’ for use. Using this strategy, we screened

microarrays in microtiter plates
probed with 96 antibodies
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Figure 1. Studying signal transduction in clinical samples by RPPA analysis in patient-matched normal and tumor lysates from 56 cases of
breast cancer. (a) Schematic of the RPPA screen. Lysates from 56 tumor and corresponding normal samples were arrayed onto nitrocellulose
pads, assembled into microtiter plates, and probed with a collection of 100 primary antibodies. A ‘fold-difference’ in protein measurements
was calculated by dividing the activity ratio of a tumor sample by the activity ratio of its matched normal sample. (b) Venn diagram of
antibodies validated for RPPAs at HMS and MD Anderson.8,9 (c) Breakdown of the 71 antibodies yielding positive signals for breast cancer
samples by target and localization. Seventy percent of all antibodies (50/71) were phospho-specific, recognizing modifications that are known
to be involved in protein activation. * denotes ‘caspase cleavage’; y denotes ‘other’subcellular localization. (d) A heatmap of ‘activity ratios’ of
71 protein measurements in 56 normal and corresponding tumor samples. The protein level distribution of HER2/neu across normal (red) and
tumor (blue) samples is also highlighted. Lower bar graph showing an average relative intensity of HER2/neu in all cases of normal and tumor
samples. Error bars represent s.e.m. * denotes Po0.05.
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over 400 commercial antibodies and successfully validated 100 of
them in one or more biological context.15,16 Our RPPA antibody
panel overlaps, but is not identical to, panels developed by
investigators at MD Anderson Cancer Center, who are active in the
Cancer Genome Atlas project8,9 (Figure 1b). With breast cancer
samples, 71 members our 100-antibody panel yielded signals
above background and were used in the current work to generate
a set of B8,000 intensity measurements, each of which was
performed in duplicate (Figure 1c,d). We estimate the technical
error in the measurements to be B±5% (see Supplementary
Materials for details). Normalizing the activity of specific measure-
ments to total protein or to a panel of housekeeping proteins
has been proven to be effective approaches and we applied the

former.17–19 The activities of phospho-antibodies ;were normalized
either to total-protein levels or pan-specific antibodies against the
same protein (for example, phospho- and total-FGFR receptor)
when the reagents were available. RPPA data were standardized
by dividing intensity values for each set of duplicate spots by the
maximum intensity value for that particular antibody across all
normal and cancer samples, thereby generating a set of ‘activity
ratios.’ In general, distributions of activity ratios were narrower for
normal tissue than for tumor tissue (Figure 2a). For measurements
such as the total levels of the Her2/ErbB2 receptor (antibody ID
33), the distribution was unimodal for normal tissue and multi-
modal for tumor tissue (Figure 2a). ‘Fold-difference’ is a robust
metric for scoring the abundance or activities of signaling
proteins,20,21 and we therefore calculated fold-change data by
dividing activity ratios for tumor samples by ratios for matched
normal tissue on an antibody-by-antibody basis. When data were
ranked by the frequency of 41.5-fold difference, we observed
significant changes between matched normal and tumor tissue for
54 out of 71 protein signals (Po0.05, Kolmogorov–Smirnov test
(KS test); Figure 2b). For example, keratin (protein ID:38) was
overexpressed in tumor tissue in 55/56 patients (98%), whereas
TCF1 (protein ID:20) was overexpressed in 20/56 patients
(36%) (see Supplementary Table S2 for ID assignments). Protein
biomarkers used to classify breast cancers clinically were elevated
to a similar extent in RPPA data and in breast cancers in general:
HER2/neu2 levels (which are predictive of responsiveness to
trastuzumab22 were elevated in 24/56 samples (43%) as compared
with B30% of patients, based on the literature.23 Similarly,
estrogen or progesterone receptor levels, which are predictive of
responsiveness to anti-hormonal therapy, were elevated in 22/56
(40%) of samples compared with B60% of patients.24 Twelve out
of fifty-six (21%) samples appeared to derive from triple-negative
tumors, as compared with B20% of patients overall. Thus, RPPA
data captures significant variation between tumor and normal
tissue, and among different tumors, consistent with current
understanding of breast cancer as a complex disease involving
multiple subtypes.

As a first step in uncovering patterns of protein co-regulation,
we performed unsupervised hierarchical clustering25 and then
drew a threshold in the dendrogram to highlight 12 clusters
(that is, with an average cluster size of six specimens; Figure 3a).
Diagnostic biomarkers were observed to fall into distinct groups:
HER2/neu co-clustered in group II with pro-survival signaling
molecules such as pAkt1, pPI3K, pRSK3, pGSK3b, PDGFRb and
insulin receptor; progesterone receptor co-clustered in group X
with Vav1, peIF4G, pPLA2; and ER clustered by itself (group XI). It
has been shown that mapping clusters of co-expressed genes
onto pathways increases information content and intepretabil-
ity.26–30 We therefore mapped RPPA clusters onto pathways
derived from Gene Network Central Pro (GNCPro); an online
resource of literature-curated interaction graphs derived from
protein–protein interaction and gene co-expression data.31 In
general, co-clustering RPPA measurements mapped onto known
RTK signaling networks. For example, the cluster containing
phosphorylated EGF receptor (pY845, group I) also contained the
phosphorylated forms of kinases known to function downstream
of epidermal growth factor receptor (EGFR) such as Raf1-pS289/
296/301, S6K-pS235/236, CAM1-pS81 and PKC-pS660 (Figure 3b).
Phosphorylated forms of ERK (pT202/pY204), MEK (pS217/pS221)
and S6K (pS240/pS244) kinases made up group VIII, consistent
with the known topology of the MAPK signaling cascade and its
importance in breast cancer32 (Supplementary Figure S1).

We focused follow-up analysis on the cluster containing the
RTK cMet (whose ligand is hepatocyte growth factor (HGF)):
cMet levels are not currently used as a prognostic biomarker in
breast cancer patients, but overexpression of the receptor is
associated with poor clinical outcome, independent of HER2/neu
status,33 and several drugs targeting cMet are currently in clinical
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Figure 2. Proteomic measurement for 71 signaling proteins in 56
normal and breast tumor lysates. (a) Violin and box plots of
probability distributions for a subset of protein measurements.
* denotes Po0.05 in Kolmogorov–Smirnov test. Blue color denotes
normal and yellow color denotes tumor distribution. (b) Activity
ratios for all 71 protein measurements ranked by the frequency of a
1.5-fold difference across the 56 matched patient samples. Numbers
denoted Protein ID for each measurement; see Supplementary
Materials for the ID code.
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development.34 We observed that levels of active cMet-pY1349
(group VII) clustered away from total HER2, ER and PR, and from
pEGFR (pY845, and pY1173), but correlated well with the total
level of the Axl receptor (R2¼ 0.870, Po0.0001) and the
phosphorylated form of the Stat3 transcription factor (R2¼ 0.883,
Po0.0001), generating a well-connected GNCPro network that
also contained the phospho forms of the Gab1 adapter (pY627),
kinases such as Pak1 (pS199/pS204) and GSK3b (pS21/pS9) and
the transcription factor cJun (pT91/pT93). Total levels of Tcf1 also
fell in this group. Axl is a member of the TAM (Tyro-Axl-Mer) family
of receptor tyrosine kinases and has previously been shown to
have a role in the motility and invasiveness of breast cancer
cells.35,36 Large-scale network reconstruction suggests an
interaction between cMet and Axl37,38 and the two receptors are
co-regulated by miR-34a in breast cancer cell lines.39

As a statistically rigorous way to investigate possible co-regulation
of Axl and cMet in RPPA data, we turned to structured Bayesian
inference involving 11 assays for proteins known to be involved
in cMet and Axl signal transduction (10 phospho-proteins
and 1 total protein, most of which clustered in group 7). We consi-
dered 15 network topologies, all of which involved the class

random variable cancer versus normal. The performance of these
models was compared to that of four networks in which the cMet
and Axl receptors were presumed to covary with cannonical
downstream effectors such as Raf and Akt. To learn the
parameters of the Bayesian networks, data on RPPA activity ratios
were discretized (Supplementary Text and Figure S2) and
inference performed on a training- and test-set. The greatest
generalization accuracy (82%) was acheived with a network
containing the interactions pcMet-Axl, pcMet-pRaf and pRaf-
pAkt; adding more interactions decreased the quality of the
inference, showing that simpler networks captured all of the
available data. Covariation captured by Bayesian inference is not
evident from simple inspection of individual probability distribu-
tions for p-cMet and total Axl (Figure 2a): p-cMet levels are
unimodal and nearly identical in normal and tumor samples,
whereas total Axl levels are bimodally distributed in tumor
samples (and have a higher mean value; Po0.05, KS-test;
Figure 2b). Bayesian network analysis captures the fact that
higher p-cMet levels correlate with higher levels of total Axl and
this covariation also correlates with the activation of Raf and Akt
(Figure 4a, Supplementary Figure S2).
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To determine if cMet and Axl receptors interact functionally,
we turned to breast cancer cell that express both receptors.
Exposing MDA-MB-231 triple-negative breast cancer cells to the
Axl ligand Gas6 (growth arrest-specific 6) activated multiple
downstream signaling cascades, including the PI3K-Akt, MAP
kinase, NF-kB and JAK-STAT pathways.40 Exposing these cells
to cMet HGF activated many of the same signaling molecules.
To determine if Gas6- and HGF-mediated signaling are inter-
dependent at the receptor level, MDA-MB-231 cells were exposed
to either Gas6 or HGF, and Axl and cMet receptor phosphorylation
assayed by ELISA. We observed that Gas6 caused transient
phosphorylation of Axl, peaking at 15 min and falling to baseline
levels by 60 min (Figure 4b). No increase in phospho-cMet levels
were observed. In contrast, exposure of cells to HGF resulted in
transient phosphorylation of both cMet and Axl receptors: p-cMet
peaked at 15 min and p-Axl peaked at 30 min (Figure 4b). This
suggests cross talk between the two receptors, as has previously
been demonstrated for cMet and EGFR in lung tumor cells that

have acquired resistance to the EGFR inhibitors gefitinib or
between IGF1 recepor and EGFR in breast cancers resistant to
erlotinib.41,42

To investigate the consequences of Axl and cMet interaction on
downstream signaling, we used xMAP micro-sandwich assays43 to
measure the phosphorylation status of 19 signaling proteins at
4–5 time points ranging from 0 to 120 min after exposure of MDA-
MB-231 cells to HGF or Gas6 (Figure 4c, Supplementary Figure S3).
Both ligands activated Akt (pS473), CREB (pS133), GSK3a/b (pS21/
pS9), Erk1 (pT202/pY204), c-Jun (pS63), MEK1 (pS217/pS221), S6
(pT421/pS424) and Stat3 (pS727), but NFkB phosphorylation
(pS536) was observed only after Gas6 exposure, as previously
described.44 We then used RNAi to deplete cells of one receptor or
the other, and exposed them to Gas6 or HGF. Axl mRNA and
protein levels were depleted B10-fold (Figure 4d, Supplementary
Figure S4), and we observed 5–10-fold reductions in Gas6-induced
phosphorylation of downstream proteins. Knocking down cMet by
RNAi was less efficient (four-fold depletion at the mRNA level and

High Axl

pMet levels

Low Axla
N

um
be

r 
of

 P
at

ie
nt

s

c d

%
 in

cr
ea

se
 in

 d
ea

d 
ce

lls

40

30

0

Ctl-
siR

NA

Axl-
siR

NA

M
et

-s
iR

NA

Axl+
M

et
-s

iR
NA

10

20

e

f

b Phospho-Met
1.5

1.2

0.0

0.3

0.6

0.9

Time (minutes)

0 5 15 30 60

Time (minutes)

0 5 15 30 60

0.0

0.8

0.6

0.4

0.2

1.0
Hgf

Gas6

Phospho-Axl

R
el

at
iv

e 
A

bs
or

ba
nc

e

Hgf

Met

Gas6

Axl

Downstream
effector (Akt, Stat3) 

p

120

100

0

20

40

60

80

Axl Met
R

el
at

iv
e 

m
R

N
A

 le
ve

ls
(%

 o
f C

tl-
si

R
N

A
)

Ctl-siRNA
Axl-siRNA
Met-siRNA

Phospshorylation

Physical interaction (possibly indirect)

Correlation (clinical data)

Transcriptional regulation

pGSK3α/β

pAKT

pc-Jun

pCREB

pERK1

pJNK

pMEK1

pNFκB

pS6

pSTAT3

Hgf Gas6 si-Axl si-Met si-Axl+Met

Gas6

10

8

6

4

2

0
0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10

pMet levels

Tumor
Normal

Figure 4. cMet has a role in Gas6-Axl-mediated activation of downstream signaling pathways. (a) Frequency distribution of cMet
phosphorylation when total Axl levels were low (below the median; left) or high (above the median; right) in both normal and tumor samples.
The dashed line denotes the median threshold. (b) Bar graphs showing phosphorylation of Axl (left) and cMet (right) upon stimualtion of
MDA-MB-231 cells with HGF or Gas6 for the indicated times. Phosphorylation of cMet and Axl receptors were measured using a sandwich
ELISA kit (from Cell Signaling Technology). (c) Time plots showing phosphorylation of 10 proteins, following the treatment of MDA-MB-231
cells for 0–120min after treatment with HGF or Gas6 (as inidicated) and assayed using xMAP assays. Time courses to the right show cells
treated with siRNA against Axl, cMet or both and exposed to Gas6. (d) Bar graph showing relative mRNA levels of Axl and cMet in MDA-MB-
231 cells transfected with Axl-siRNA and cMet-siRNA. All values were normalized to control samples transfected with Ctl-siRNA. (e) Dual
knockdown of Axl and cMet causes increase in cell death, as shown by increase in the number dead cells upon knockdown of Axl, cMet
individually or together. Bars represent mean of three independent experiments and error bars represent s.e.m. (f ) Pathway diagram
summarizing proposed mechanisms of cross talk between Axl and cMet kinases, based on this work and the literature. Levels Axl and p-cMet
are correlated in breast tumor samples (yellow), and we have shown that treatment of cells with HGF results in Axl phosphorylation (red line);
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two-fold at the protein level, Figure 4d, Supplementary Figure S4),
resulting in a 2–4-fold reduction and a delay in both HGF and
Gas6-mediated phosphorylation of downstream proteins (Figure 4c,
Supplementary Figure S3). Knocking down cMet also resulted in a
reduction in Axl mRNA levels, consistent with previous reports that
the two receptors are co-regulated and consistent with delays in
Gas6-mediated phosphorylation of downstream signaling proteins
(Figure 4d). The converse was not true, however, Axl depletion did
not alter the dynamics or magnitude of HGF-mediated signal
transduction. Several studies have shown that knockdown of
Met or Axl reduced motility, invasiveness and tumorogenicity in
mice.45–48 In our hands, dual knockdown of Axl and cMet in MDA-
MB-231 cells also increased cell death. (Figure 4e) and knockdown
of either gene reduced cell migration in a wound-healing assay
(Supplementary Figure S5). Thus, both Axl and cMet are involved
in typical oncogenic processes in MDA-MB-231 and they may act
cooperatively in pro-survival signaling. Co-immunoprecipitation
of ectopically expressed Axl and cMet also suggested that the
receptors may associate physically: we detected the presence of
myc-cMet in HA-Axl immuno-precipitates prepared from lysates
of HEK 293 cells overexpressing HA-tagged Axl and myc-tagged
cMet (Supplementary Figure S6). Co-purification has been observed
in some but not all previously described heterotypic RTK interactions:
for example, IGF1R and EGFR, but not cMet and EGFR, co-purify in
drug-resistant cell lines.49 The details of the interaction between
cMet and Axl remain to be elucidated and are likely to be
complex: although HGF exposure causes both cMet and Axl
phosphorylation, knocking down Axl does not appear to alter
HGF-mediated phosphorylation of downstream proteins. In contrast,
Gas6 exposure results only in Axl phosphorylation, but knocking
down cMet alters the timing and magnitude of Gas6-mediated
signaling (Figure 4f). Despite these complexities, cell line data
support the findings from RPPA analysis showing that Axl and
cMet receptors exhibit cross talk and may interact physically in
breast cancer cells.

In this paper, we show that RPPA analysis can be used to assay
the activation state of signaling proteins in lysates derived from
primary tumors. Patterns of protein phosphorylation are remark-
ably diverse from one tumor to the next, but are consistent with
the known topologies of oncogenic signaling pathways and
with biomarker-based classification of breast cancer subtypes.
The current study benefits from the availability of high-quality
lysates, but suffers from a lack of access to genomic data or the
clinical histories of the individual patients. We have therefore
focused on pathway inference, specifically with regard to the cMet
and Axl RTKs. It is highly probable that additional information can
be extracted from our RPPA data using more sophisticated analytical
methods, and we encourage others to download the data.

If cMet and Axl function coordinately in cancer, as we
hypothesize, then it may be advantageous to develop bi-specific
antibodies that block both receptors simultaneously. Therapeutic
antibodies currently in development that target cMet, such as
Onartuzumab are not expected to block Axl, but small molecule
cMet kinase inhibitors (GSK1363089, BMS-777607, MP470) do
appear to inhibit Axl as well.34,50,51 More generally, positive results
from the current study provide an impetus to clinical investigators,
drug companies and institutional review boards to include
phosphorylation-rich RPPA analysis in the analysis of clinical
data. We note that relatively little work will be required to create
a superset of 133 well-validated antibodies spanning both the
HMS and MD Anderson RPPA platforms.
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